Part Number Hot Search : 
LBN10016 LC1502 1210E A12BB SBP1035T TC27V WPC8769L HE06E
Product Description
Full Text Search
 

To Download TDA5141AT Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 INTEGRATED CIRCUITS
DATA SHEET
TDA5141 Brushless DC motor drive circuit
Product specification Supersedes data of March 1992 File under Integrated Circuits, IC02 April 1994
Philips Semiconductors
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
FEATURES * Full-wave commutation (using push/pull drivers at the output stages) without position sensors * Built-in start-up circuitry * Three push-pull outputs: - output current 1.9 A (typ.) - low saturation voltage - built-in current limiter * Thermal protection * Flyback diodes * Tacho output without extra sensor * Position pulse stage for phase-locked-loop control * Transconductance amplifier for an external control transistor. QUICK REFERENCE DATA Measured over full voltage and temperature range. SYMBOL VP VVMOT VDO ILIM Notes 1. An unstabilized supply can be used. 2. VVMOT = VP; +AMP IN = -AMP IN = 0 V; all outputs IO = 0 mA. ORDERING INFORMATION PACKAGE EXTENDED TYPE NUMBER PINS TDA5141 TDA5141T TDA5141AT 18 28 20 PIN POSITION DIL SOL SOL MATERIAL plastic plastic plastic PARAMETER supply voltage input voltage to the output driver stages drop-out output voltage current limiting note 1 note 2 IO = 100 mA VVMOT = 10 V; RO = 1.2 CONDITIONS 4 1.7 - 1.6 MIN. - - 0.9 1.9 TYP. APPLICATIONS * VCR * Laser beam printer * Fax machine. GENERAL DESCRIPTION
TDA5141
The TDA5141 is a bipolar integrated circuit used to drive 3-phase brushless DC motors in full-wave mode. The device is sensorless (saving of 3 hall-sensors) using the back-EMF sensing technique to sense the rotor position. It is ideally suited for applications requiring powerful output stages (minimum current limit of 1.9 A).
MAX. 18 16 1.05 2.3
UNIT V V V A
CODE SOT102 SOT136A SOT163A
April 1994
2
BBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBB B BBBBBBBBBBBBBBBBBBBBB B
BBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBB BBBBBBBBB BBBBBBBBB BBBBBBBBB BBBBBBBBB BBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBB BBBBBBBBB BBBBBBBBB BBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB
BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB
BBBBBBBBBBBBB BBBBBBBBBBBBB BBBBBBBBBBBBB BBBBBBBBBBBBB BBBBBBBBBBBBB BBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
April 1994 BLOCK DIAGRAM Philips Semiconductors
Brushless DC motor drive circuit
Fig.1 Block diagram (SOT102; DIL18).
3 Product specification
TDA5141
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
PINNING SYMBOL MOT1 TEST n.c. MOT2 n.c. VMOT PG IN - 4 5 3 - 5 6 PIN DIL18 1 2 PIN SO20L 1 2 3 4 PIN SO28L 1 and 2 3 4 5 and 6 7 8 and 9 10 driver output 1 test input/output not connected driver output 2 not connected input voltage for the output driver stages DESCRIPTION
TDA5141
position generator: input from the position detector sensor to the position detector stage (optional); only if an external position coil is used position generator/frequency generator: output of the rotation speed and position detector stages (open collector digital output, negative-going edge is valid) ground supply return for control circuits supply voltage external capacitor connection for adaptive communication delay timing external capacitor connection for adaptive communication delay timing copy external capacitor connection for start-up oscillator external capacitor connection for timing non-inverting input of the transconductance amplifier inverting input of the transconductance amplifier transconductance amplifier output (open collector)
PG/FG
6
7
11
GND2 VP CAP-CD CAP-DC CAP-ST CAP-TI +AMP IN -AMP IN AMP OUT n.c. MOT3 n.c. MOT0 GND1 - -
7 8 9 10 11 12 13 14 15 - 16 17 18
8 9 10 11 12 13 14 15 16 17 18 19 20
12 13 14 15 16 17 18 19 20
21 and 22 not connected 23 and 24 driver output 3 25 26 not connected input from the star point of the motor coils
27 and 28 ground (0 V) motor supply return for output stages
April 1994
4
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5141
Fig.2 Pin configuration (SOT102; DIL18).
Fig.3 Pin configuration (SOT163A; SO20L).
Fig.4 Pin configuration (SOT136A; SO28L).
April 1994
5
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
FUNCTIONAL DESCRIPTION
TDA5141
The TDA5141 offers a sensorless three phase motor drive function. It is unique in its combination of sensorless motor drive and full-wave drive. The TDA5141 offers protected outputs capable of handling high currents and can be used with star or delta connected motors. It can easily be adapted for different motors and applications. The TDA5141 offers the following features: * Sensorless commutation by using the motor EMF. * Built-in start-up circuit. * Optimum commutation, independent of motor type or motor loading. * Built-in flyback diodes. * Three phase full-wave drive. * High output current (1.9 A). * Outputs protected by current limiting and thermal protection of each output transistor. * Low current consumption by adaptive base-drive. * Accurate frequency generator (FG) by using the motor EMF. * Amplifier for external position generator (PG) signal. * Suitable for use with a wide tolerance, external PG sensor. * Built-in multiplexer that combines the internal FG and external PG signals on one pin for easy use with a controlling microprocessor. * Uncommitted operational transconductance amplifier (OTA), with a high output current, for use as a control amplifier. LIMITING VALUES In accordance with the Absolute Maximum Rating System (IEC 134). SYMBOL VP VI VVMOT VO PARAMETER supply voltage input voltage; all pins except VMOT VMOT input voltage output voltage AMP OUT and PG/FG MOT1, MOT2 and MOT3 VI Tstg Tamb Ptot Ves input voltage CAP-ST, CAP-TI, CAP-CD and CAP-DC storage temperature operating ambient temperature total power dissipation electrostatic handling see Figs 5 to 7 see Chapter "Handling" GND -1 - -55 0 - - VP VVMOT + VDHF 2.5 +150 +70 - 500 V V V C C W V VI < 18 V CONDITIONS - -0.3 -0.5 MIN. 18 VP + 0.5 17 MAX. V V V UNIT
April 1994
6
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5141
MBD535
3 P tot (W)
2.28
3 P tot (W)
MBD536
2
2
1.38 1.05
1
0 50 0 50 70 100 150 T amb ( oC) 200
0 50 0 50 70 100 150 T amb ( oC) 200
Fig.5 Power derating curve (SOT102; DIL18).
Fig.6 Power derating curve (SOT163A; SO20L).
HANDLING Every pin withstands the ESD test according to "MIL-STD-883C class 2". Method 3015 (HBM 1500 , 100 pF) 3 pulses + and 3 pulses - on each pin referenced to ground.
3 P tot (W)
MBD557
2
1.62
1
0 50 0 50 100 150 T amb ( oC) 200
Fig.7 Power derating curve (SOT136A; SO28L).
April 1994
7
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
CHARACTERISTICS VP = 14.5 V; Tamb = 25 C; unless otherwise specified. SYMBOL Supply VP IP VVMOT supply voltage supply current input voltage to the output driver stages note 1 note 2 see Fig.1 4 - 1.7 - 5.2 - PARAMETER CONDITIONS MIN. TYP.
TDA5141
MAX.
UNIT
18 6.8 16
V mA V
Thermal protection TSD T local temperature at temperature sensor causing shut-down reduction in temperature before switch-on after shut-down 130 - 140 TSD - 30 150 - C K
MOT0; centre tap VI II VCSW VCSW Vhys VDO VOL VOH ILIM VDHF VDLF IDM VI input voltage input bias current comparator switching level variation in comparator switching levels comparator input hysteresis note 3 -0.5 0.5 V < VI < VVMOT - 1.5 V -10 20 -3 - - - - - - - 30 0 75 VVMOT 0 40 +3 - V A mV mV V
MOT1, MOT2 and MOT3 drop-out output voltage variation in saturation voltage between lower transistors variation in saturation voltage between upper transistors current limiting diode forward voltage (diode DH) diode forward voltage (diode DL) peak diode current IO = 100 mA IO = 1000 mA IO = 100 mA IO = -100 mA 0.90 1.65 - - 1.9 - - - - - - 4 - 1.05 1.85 180 180 2.3 1.5 - 2.3 VP - 1.7 VP 650 - 10 V V mV mV A V V A
VVMOT = 10 V; RO = 1.2 1.6 IO = -500 mA; notes 4 and 5; see Fig.1 IO = 500 mA; notes 4 and 5; see Fig.1 note 5 - -1.5 - -0.3 - - - -
+AMP IN and -AMP IN input voltage differential mode voltage without `latch-up' Ib CI Voffset input bias current input capacitance input offset voltage V V nA pF mV
April 1994
8
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5141
SYMBOL
PARAMETER
CONDITIONS
MIN. -
TYP. -
MAX.
UNIT
AMP OUT (open collector) Isink Vsat VO SR Gtr PG IN VI Ib RI VCWS Vhys VOL VOH(max) tTHL input voltage input bias current input resistance comparator switching level comparator input hysteresis -0.3 - 5 86 - - VP CL = 50 pF; RL = 10 k - - - after a PG IN pulse 5 - - - - 8 - - 0.5 1:2 50 7 VP - 1.7 650 30 107 - V nA k mV mV output sink current saturation voltage output voltage slew rate transfer gain RL = 330 ; CL = 50 pF II = 40 mA 40 - -0.5 - 0.3 mA V V mA/s S 1.5 - 60 - 2.1 +18 - -
PG/FG (open collector) LOW level output voltage maximum HIGH level output voltage HIGH-to-LOW transition time ratio of PG/FG frequency and commutation frequency tPL CAP-ST Isink Isource VSWL VSWH CAP-TI Isink Isource VSWL VSWM VSWH output sink current output source current LOW level switching voltage MIDDLE level switching voltage HIGH level switching voltage 0.05 V < VCAP-TI < 0.3 V 0.3 V < VCAP-TI < 2.2 V - - - - - - 28 -57 -5 50 0.30 2.20 - - - - - - A A A mV V V output sink current output source current LOW level switching voltage HIGH level switching voltage 1.5 -2.5 - - 2.0 -2.0 0.20 2.20 2.5 -1.5 - - A A V V duty factor pulse width LOW IO = 1.6 mA 0.4 - - - - 30 % s V V s
April 1994
9
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5141
SYMBOL CAP-CD Isink Isource VIL VIH CAP-DC Isink Isource VIL VIH Notes
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT A A mV V A A mV V
output sink current output source current LOW level input voltage HIGH level input voltage
10.6 -5.3 1.85 850 2.3
16.2 -8.1 2.05 875 2.4
22 -11 2.25 900 2.55
Isink/Isource ratio of sink to source current
output sink current output source current LOW level input voltage HIGH level input voltage
10.1 -20.9 0.9 850 2.3
15.5 -15.5 1.025 875 2.4
20.9 -10.1 1.15 900 2.55
Isink/Isource ratio of sink to source current
1. An unstabilized supply can be used. 2. VVMOT = VP, all other inputs at 0 V; all outputs at VP; IO = 0 mA. 3. Switching levels with respect to MOT1, MOT2 and MOT3. 4. Drivers are in the high-impedance OFF-state. 5. The outputs are short-circuit protected by limiting the current and the IC temperature. APPLICATION INFORMATION
(1) Value selected for 3 Hz start-up oscillator frequency.
Fig.8 Application diagram without use of the operational transconductance amplifier (OTA).
April 1994
10
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
Introduction (see Fig.9) Full-wave driving of a three phase motor requires three push-pull output stages. In each of the six possible states two outputs are active, one sourcing (H) and one sinking (L). The third output presents a high impedance (Z) to the motor, which enables measurement of the motor back-EMF in the corresponding motor coil by the EMF comparator at each output. The commutation logic is responsible for control of the output transistors and selection of the correct EMF comparator. In Table 1 the sequence of the six possible states of the outputs has been depicted. Table 1 Output states. STATE 1 2 3 4 5 6 Note 1. H = HIGH state; L = LOW state; Z = high impedance OFF-state. The zero-crossing in the motor EMF (detected by the comparator selected by the commutation logic) is used to calculate the correct moment for the next commutation, that is, the change to the next output state. The delay is calculated (depending on the motor loading) by the adaptive commutation delay block. MOT1(1) Z H H Z L L MOT2(1) L L Z H H Z MOT3(1) H Z L L Z H
TDA5141
Because of high inductive loading the output stages contain flyback diodes. The output stages are also protected by a current limiting circuit and by thermal protection of the six output transistors. The detected zero-crossings are used to provide speed information. The information has been made available on the PG/FG output pin. This is an open collector output and provides an output signal with a frequency that is half the commutation frequency. A VCR scanner also requires a PG phase sensor. This circuit has an interface for a simple pick-up coil. A multiplexer circuit is also provided to combine the FG and PG signals in time. The system will only function when the EMF voltage from the motor is present. Therefore, a start oscillator is provided that will generate commutation pulses when no zero-crossings in the motor voltage are available. A timing function is incorporated into the device for internal timing and for timing of the reverse rotation detection. The TDA5141 also contains an uncommitted transconductance amplifier (OTA) that can be used as a control amplifier. The output is capable of directly driving an external power transistor. The TDA5141 is designed for systems with low current consumption: use of I2L logic, adaptive base drive for the output transistors (patented), possibility of using a pick-up coil without bias current.
April 1994
11
BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB B BBBBBBBBBBBBBBBBB
BBBBBBBB BBBBBBBB BBBBBBBB BBBBBBBB BBBBBBBB BBBBBBBB BBBBBBB BBBBBBB BBBBBBB BBBBBBB BBBBBBB BBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBB BBBBBBBBB BBBBBBBBB BBBBBBBBB
BB BB BB BB BB BB BB
B B B B B
BBBBBBBB BBBBBBBB BBBBBBBB BBBBBBBB BBBBBBBB BBBBBBBB BBBBBBBB BBBBBBBB BBBBBBBB BBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB
BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB
April 1994 Philips Semiconductors
Brushless DC motor drive circuit
Fig.9 Typical application of the TDA5141 as a scanner driver, with use of OTA.
12 Product specification
TDA5141
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
Adjustments The system has been designed in such a way that the tolerances of the application components are not critical. However, the approximate values of the following components must still be determined: * The start capacitor; this determines the frequency of the start oscillator. * The two capacitors in the adaptive commutation delay circuit; these are important in determining the optimum moment for commutation, depending on the type and loading of the motor. * The timing capacitor; this provides the system with its timing signals. THE START CAPACITOR (CAP-ST) This capacitor determines the frequency of the start oscillator. It is charged and discharged, with a current of 2 A, from 0.05 to 2.2 V and back to 0.05 V. The time taken to complete one cycle is given by: tstart = (2.15 x C) s (with C in F). The start oscillator is reset by a commutation pulse and so is only active when the system is in the start-up mode. A pulse from the start oscillator will cause the outputs to change to the next state (torque in the motor). If the movement of the motor generates enough EMF the TDA5141 will run the motor. If the amount of EMF generated is insufficient, then the motor will move one step only and will oscillate in its new position. The amplitude of the oscillation must decrease sufficiently before the arrival of the next start pulse, to prevent the pulse arriving during the wrong phase of the oscillation. The oscillation of the motor is given by: 1 f osc = ---------------------------------Kt x I x p 2 ---------------------J where: Kt = torque constant (N.m/A) I = current (A) p = number of magnetic pole-pairs J = inertia J (kg.m2) Example: J = 72 x 10-6 kg.m2, K = 25 x 10-3 N.m/A, p = 6 and I = 0.5 A; this gives fosc = 5 Hz. If the damping is high then a start frequency of 2 Hz can be chosen or t = 500 ms, thus C = 0.5/2 = 0.25 F (choose 220 nF).
TDA5141
THE ADAPTIVE COMMUTATION DELAY (CAP-CD AND CAP-DC) In this circuit capacitor CAP-CD is charged during one commutation period, with an interruption of the charging current during the diode pulse. During the next commutation period this capacitor (CAP-CD) is discharged at twice the charging current. The charging current is 8.1 A and the discharging current 16.2 A; the voltage range is from 0.9 to 2.2 V. The voltage must stay within this range at the lowest commutation frequency of interest, fC1: 6231 8.1 x 10 C = ------------------------- = ------------ (C in nF) f C1 f x 1.3 If the frequency is lower, then a constant commutation delay after the zero-crossing is generated by the discharge from 2.2 to 0.9 V at 16.2 A; maximum delay = (0.076 x C) ms (with C in nF). Example: nominal commutation frequency = 900 Hz and the lowest usable frequency = 400 Hz; so: 6231 CAP-CD = ------------ = 15.6 (choose 18 nF) 400 The other capacitor, CAP-DC, is used to repeat the same delay by charging and discharging with 15.5 A. The same value can be chosen as for CAP-CD. Figure 10 illustrates typical voltage waveforms.
-6
April 1994
13
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5141
Fig.10 CAP-CD and CAP-DC typical voltage waveforms in normal running mode.
THE TIMING CAPACITOR (CAP-TI) Capacitor CAP-TI is used for timing the successive steps within one commutation period; these steps include some internal delays. The most important function is the watchdog time in which the motor EMF has to recover from a negative diode-pulse back to a positive EMF voltage (or vice versa). A watchdog timer is a guarding function that only becomes active when the expected event does not occur within a predetermined time. The EMF usually recovers within a short time if the motor is running normally (<>ms). A watchdog time must be chosen so that it is long enough for a motor without EMF (still) and eddy currents that may stretch the voltage in a motor winding; however, it must be short enough to detect reverse rotation. If the watchdog time is made too long, then the motor may run in the wrong direction (with little torque).
The capacitor is charged, with a current of 57 A, from 0.2 to 0.3 V. Above this level it is charged, with a current of 5 A, up to 2.2 V only if the selected motor EMF remains in the wrong polarity (watchdog function). At the end, or, if the motor voltage becomes positive, the capacitor is discharged with a current of 28 A. The watchdog time is the time taken to charge the capacitor, with a current of 5 A, from 0.3 to 2.2 V. To ensure that the internal delays are covered CAP-TI must have a minimum value of 2 nF. For the watchdog function a value for CAP-TI of 10 nF is recommended. To ensure a good start-up and commutation, care must be taken that no oscillations occur at the trailing edge of the flyback pulse. Snubber networks at the outputs should be critically damped. Typical voltage waveforms are illustrated by Fig.11.
April 1994
14
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5141
If the chosen value of CAP-TI is too small oscillations can occur in certain positions of a blocked rotor. If the chosen value is too large, then it is possible that the motor may run in the reverse direction (synchronously with little torque).
Fig.11 Typical CAP-TI and VMOT1 voltage waveforms in normal running mode.
Other design aspects There are other design aspects concerning the application of the TDA5141 besides the commutation function. They are: * Generation of the tacho signal FG * A built-in interface for a PG sensor * General purpose operational transconductance amplifier (OTA) * Possibilities of motor control * Reliability. FG SIGNAL The FG signal is generated in the TDA5141 by using the zero-crossing of the motor EMF from the three motor windings. Every zero-crossing in a (star connected) motor winding is used to toggle the FG output signal. The FG frequency is therefore half the commutation frequency. All transitions indicate the detection of a zero-crossing (except for PG). The negative-going edges are called FG pulses because they generate an interrupt in a controlling microcontroller.
The accuracy of the FG output signal (jitter) is very good. This accuracy depends on the symmetry of the motor's electromagnetic construction, which also effects the satisfactory functioning of the motor itself. Example: A 3-phase motor with 6 magnetic pole-pairs at 1500 rpm and with a full-wave drive has a commutation frequency of 25 x 6 x 6 = 900 Hz, and generates a tacho signal of 450 Hz. PG SIGNAL The accuracy of the PG signal in applications such as VCR must be high (phase information). This accuracy is obtained by combining the accurate FG signal with the PG signal by using a wide tolerance external PG sensor. The external PG signal (PG IN) is only used as an indicator to select a particular FG pulse. This pulse differs from the other FG pulses in that it has a short LOW-time of 18 s after a HIGH-to-LOW transition. All other FG pulses have a 50% duty factor (see Fig.12). For more information also see application note "EIE/AN 93014".
April 1994
15
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5141
Fig.12 Timing and the FG and PG IN signals.
The special PG pulse is derived from the negative-going zero-crossing from the MOT3 output. The external PG signal (PG IN) must sense a positive-going voltage (>80 mV) within 1.5 to 7.5 commutation periods before the negative-going zero-crossing in MOT3 (see Fig.12). The voltage requirements of the PG IN input are such that an inexpensive pick-up coil can be used as a sensor (see Fig.13). Example: If p = 6, then one revolution contains 6 x 6 = 36 commutations. The tolerance is 6 periods, that is 60 degrees (mechanically) or 6.67 ms at 1500 rpm. If a PG sensor is not used, the PG IN input must be grounded, this will result in a 50% duty factor FG signal.
2.2 k PG IN 22 nF GND2
MBD696
Fig.13 Pick-up coil as PG sensor.
April 1994
16
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
THE OPERATIONAL TRANSCONDUCTANCE AMPLIFIER (OTA) The OTA is an uncommitted amplifier with a high output current (40 mA) that can be used as a control amplifier. The common mode input range includes ground (GND) and rises to VP - 1.7 V. The high sink current enables the OTA to drive a power transistor directly in an analog control amplifier. Although the gain is not extremely high (0.3 S), care must be taken with the stability of the circuit if the OTA is used as a linear amplifier as no frequency compensation has been provided. The convention for the inputs (inverting or not) is the same as for a normal operational amplifier: with a resistor (as load) connected from the output (AMP OUT) to the positive supply, a positive-going voltage is found when the non-inverting input (+AMP IN) is positive with respect to the inverting input (-AMP IN). Confusion is possible because a `plus' input causes less current, and so a positive voltage. MOTOR CONTROL DC motors can be controlled in an analog manner using the OTA. For the control an external transistor is required. The OTA can supply the base current for this transistor and act as a control amplifier (see Fig.9). RELIABILITY
TDA5141
It is necessary to protect high current circuits and the output stages are protected in two ways: * Current limiting of the `lower' output transistors. The `upper' output transistors use the same base current as the conducting `lower' transistor (+15%). This means that the current to and from the output stages is limited. * Thermal protection of the six output transistors is achieved by each transistor having a thermal sensor that is active when the transistor is switched on. The transistors are switched off when the local temperature becomes too high. It is possible, that when braking, the motor voltage (via the flyback diodes and the impedance on VMOT) may cause higher currents than allowed (>0.6 A). These currents must be limited externally.
April 1994
17
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
PACKAGE OUTLINES
TDA5141
seating plane
22.00 21.35
8.25 7.80 3.7 max 4.7 max
3.9 3.4
0.51 min
0.85 max
2.54 (8x) 1.4 max
0.53 max
0.254 M
0.32 max 7.62 9.5 8.3
MSA259
18
10 6.48 6.14
1
9
Dimensions in mm.
Fig.14 18-pin dual in-line; plastic (SOT102).
April 1994
18
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5141
handbook, full pagewidth
13.0 12.6
7.6 7.4
A
S 0.9 (4x) 0.4
0.1 S
10.65 10.00
20
11 2.45 2.25 1.1 1.0 0.3 0.1 0.32 0.23 1.1 0.5 detail A 2.65 2.35
pin 1 index 1 10 0 to 8
o
MBC234 - 1
1.27
0.49 0.36
0.25 M (20x)
Dimensions in mm.
Fig.15 20-pin small-outline; plastic (SO20L; SOT163A).
April 1994
19
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5141
handbook, full pagewidth
18.1 17.7
7.6 7.4 A
S 0.9 (4x) 0.4
0.1 S
10.65 10.00
28
15 2.45 2.25 1.1 1.0 0.3 0.1 0.32 0.23 1.1 0.5 detail A 2.65 2.35
pin 1 index 1 14 0 to 8o
MBC236 - 1
1.27
0.49 0.36
0.25 M (28x)
Dimensions in mm.
Fig.16 28-pin small-outline; plastic (SO28L; SOT136A).
April 1994
20
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
SOLDERING Plastic dual in-line packages BY DIP OR WAVE The maximum permissible temperature of the solder is 260 C; this temperature must not be in contact with the joint for more than 5 s. The total contact time of successive solder waves must not exceed 5 s. The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit. REPAIRING SOLDERED JOINTS Apply the soldering iron below the seating plane (or not more than 2 mm above it). If its temperature is below 300 C, it must not be in contact for more than 10 s; if between 300 and 400 C, for not more than 5 s. Plastic small-outline packages BY WAVE During placement and before soldering, the component must be fixed with a droplet of adhesive. After curing the adhesive, the component can be soldered. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. Maximum permissible solder temperature is 260 C, and maximum duration of package immersion in solder bath is 10 s, if allowed to cool to less than 150 C within 6 s. Typical dwell time is 4 s at 250 C. A modified wave soldering technique is recommended using two solder waves (dual-wave), in which a turbulent wave with high upward pressure is followed by a smooth laminar wave. Using a mildly-activated flux eliminates the need for removal of corrosive residues in most applications. BY SOLDER PASTE REFLOW
TDA5141
Reflow soldering requires the solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the substrate by screen printing, stencilling or pressure-syringe dispensing before device placement. Several techniques exist for reflowing; for example, thermal conduction by heated belt, infrared, and vapour-phase reflow. Dwell times vary between 50 and 300 s according to method. Typical reflow temperatures range from 215 to 250 C. Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 min at 45 C. REPAIRING SOLDERED JOINTS (BY HAND-HELD SOLDERING
IRON OR PULSE-HEATED SOLDER TOOL)
Fix the component by first soldering two, diagonally opposite, end pins. Apply the heating tool to the flat part of the pin only. Contact time must be limited to 10 s at up to 300 C. When using proper tools, all other pins can be soldered in one operation within 2 to 5 s at between 270 and 320 C. (Pulse-heated soldering is not recommended for SO packages.) For pulse-heated solder tool (resistance) soldering of VSO packages, solder is applied to the substrate by dipping or by an extra thick tin/lead plating before package placement.
April 1994
21
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
DEFINITIONS Data sheet status Objective specification Preliminary specification Product specification Limiting values
TDA5141
This data sheet contains target or goal specifications for product development. This data sheet contains preliminary data; supplementary data may be published later. This data sheet contains final product specifications.
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application information Where application information is given, it is advisory and does not form part of the specification. LIFE SUPPORT APPLICATIONS These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.
April 1994
22
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
NOTES
TDA5141
April 1994
23
Philips Semiconductors - a worldwide company
Argentina: IEROD, Av. Juramento 1992 - 14.b, (1428) BUENOS AIRES, Tel. (541)786 7633, Fax. (541)786 9367 Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. (02)805 4455, Fax. (02)805 4466 Austria: Triester Str. 64, A-1101 WIEN, P.O. Box 213, Tel. (01)60 101-1236, Fax. (01)60 101-1211 Belgium: Postbus 90050, 5600 PB EINDHOVEN, The Netherlands, Tel. (31)40 783 749, Fax. (31)40 788 399 Brazil: Rua do Rocio 220 - 5th floor, Suite 51, CEP: 04552-903-SAO PAULO-SP, Brazil. P.O. Box 7383 (01064-970). Tel. (011)821-2327, Fax. (011)829-1849 Canada: INTEGRATED CIRCUITS: Tel. (800)234-7381, Fax. (708)296-8556 DISCRETE SEMICONDUCTORS: 601 Milner Ave, SCARBOROUGH, ONTARIO, M1B 1M8, Tel. (0416)292 5161 ext. 2336, Fax. (0416)292 4477 Chile: Av. Santa Maria 0760, SANTIAGO, Tel. (02)773 816, Fax. (02)777 6730 Colombia: Carrera 21 No. 56-17, BOGOTA, D.E., P.O. Box 77621, Tel. (571)217 4609, Fax. (01)217 4549 Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. (032)88 2636, Fax. (031)57 1949 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. (9)0-50261, Fax. (9)0-520971 France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex, Tel. (01)4099 6161, Fax. (01)4099 6427 Germany: P.O. Box 10 63 23, 20095 HAMBURG , Tel. (040)3296-0, Fax. (040)3296 213 Greece: No. 15, 25th March Street, GR 17778 TAVROS, Tel. (01)4894 339/4894 911, Fax. (01)4814 240 Hong Kong: 15/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, N.T. Tel. (0)4245 121, Fax. (0)4806 960 India: Philips Components Division, A Block Shivsagar Estate Worli, Dr. Annie Besant Rd., Bombay 400 018 Tel. (022)4938 541, Fax. (022)4938 722 Indonesia: Philips House, Jalan H.R. Rasuna Said Kav. 3-4, P.O. Box 4252, JAKARTA 12950, Tel. (021)5201 122, Fax. (021)5205 189 Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. (01)640 000, Fax. (01)640 200 Italy: Viale F. Testi, 327, 20162 MILANO, Tel. (02)6752.3358, Fax. (02)6752.3350 Japan: Philips Bldg 13-37, Kohnan 2 -chome, Minato-ku, TOKYO 108, Tel. (03)3740 5028, Fax. (03)3740 0580 Korea: (Republic of) Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. (02)794-5011, Fax. (02)798-8022 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. (03)750 5214, Fax. (03)757 4880 Mexico: Philips Components, 5900 Gateway East, Suite 200, EL PASO, TX 79905, Tel. 9-5(800)234-7381, Fax. (708)296-8556 Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Tel. (040)78 37 49, Fax. (040)78 83 99 New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. (09)849-4160, Fax. (09)849-7811 Norway: Box 1, Manglerud 0612, OSLO, Tel. (022)74 8000, Fax. (022)74 8341 Pakistan: Philips Markaz, M.A. Jinnah Rd., KARACHI 3, Tel. (021)577 039, Fax. (021)569 1832 Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc, 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. (02)810 0161, Fax. (02)817 3474 Portugal: Av. Eng. Duarte Pacheco 6, 1009 LISBOA Codex, Tel. (01)683 121, Fax. (01)658 013 Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. (65)350 2000, Fax. (65)251 6500 South Africa: 195-215 Main Road, Martindale, P.O. Box 7430,JOHANNESBURG 2000, Tel. (011)470-5911, Fax. (011)470-5494 Spain: Balmes 22, 08007 BARCELONA, Tel. (03)301 6312, Fax. (03)301 42 43 Sweden: Kottbygatan 7, Akalla. S-164 85 STOCKHOLM, Tel. (0)8-632 2000, Fax. (0)8-632 2745 Switzerland: Allmendstrasse 140, CH-8027 ZURICH, Tel. (01)488 2211, Fax. (01)481 7730 Taiwan: 23-30F, 66, Chung Hsiao West Road, Sec. 1, P.O. Box 22978, TAIPEI 10446, Tel. (2)382 4443, Fax. (2)382 4444 Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 60/14 MOO 11, Bangna - Trad Road Km. 3 Prakanong, BANGKOK 10260, Tel. (2)399-3280 to 9, (2)398-2083, Fax. (2)398-2080 Turkey: Talatpasa Cad. No. 5, 80640 GULTEPE/ISTANBUL, Tel. (0212)279 2770, Fax. (0212)269 3094 United Kingdom: Philips Semiconductors Limited, P.O. Box 65, Philips House, Torrington Place, LONDON, WC1E 7HD, Tel. (071)436 41 44, Fax. (071)323 03 42 United States: INTEGRATED CIRCUITS: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. (800)234-7381, Fax. (708)296-8556 DISCRETE SEMICONDUCTORS: 2001 West Blue Heron Blvd., P.O. Box 10330, RIVIERA BEACH, FLORIDA 33404, Tel. (800)447-3762 and (407)881-3200, Fax. (407)881-3300 Uruguay: Coronel Mora 433, MONTEVIDEO, Tel. (02)70-4044, Fax. (02)92 0601
For all other countries apply to: Philips Semiconductors, International Marketing and Sales, Building BAF-1, P.O. Box 218, 5600 MD, EINDHOVEN, The Netherlands, Telex 35000 phtcnl, Fax. +31-40-724825 SCD30 (c) Philips Electronics N.V. 1994
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
9397 728 60011
Philips Semiconductors


▲Up To Search▲   

 
Price & Availability of TDA5141AT

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X